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[ARC has begun using ToxCast/Tox21 data in efforts to represent key characteristics of carcinogens to
organize and weigh mechanistic evidence in cancer hazard determinations and this implicit inference
approach also is being considered by USEPA. To determine how well ToxCast/Tox21 data can explicitly
predict cancer hazard, this approach was evaluated with statistical analyses and machine learning
prediction algorithms. Substances USEPA previously classified as having cancer hazard potential were
designated as positives and substances not posing a carcinogenic hazard were designated as negatives.
Then ToxCast/Tox21 data were analyzed both with and without adjusting for the cytotoxicity burst effect
commonly observed in such assays. Using the same assignments as IARC of ToxCast/Tox21 assays to the
seven key characteristics of carcinogens, the ability to predict cancer hazard for each key characteristic,
alone or in combination, was found to be no better than chance. Hence, we have little scientific confi-
dence in IARC's inference models derived from current ToxCast/Tox21 assays for key characteristics to
predict cancer. This finding supports the need for a more rigorous mode-of-action pathway-based
framework to organize, evaluate, and integrate mechanistic evidence with animal toxicity, epidemio-
logical investigations, and knowledge of exposure and dosimetry to evaluate potential carcinogenic

hazards and risks to humans.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (hiip:{{fvreaivecommonsg senses{by-nond

1. Introduction

Notably, the choice of the likely operative mode of action, which
dictates the low-dose extrapolation method, has significant con-

Cancer pathogenesis includes a number of molecular and bio- sequences for risk assessment and chemical regulation. For

logical hallmarks (Hanahan and o

v, 2004, 21, This example, USEPA’s Guidelines for Carcinogen Risk Assessment (LISEPA,

recognition has contributed to an mcreased emphasis on inte-
grating mechanistic data and knowledge of mode of action (MOA)
into judgments of whether a chemical poses a cancer risk to
humans. For many chemicals, the scientific basis for assessing hu-
man carcinogenic hazard, the selection of a dose-response
extrapolation method, and the quantification of cancer risks at
environmental levels of exposures all depend on evaluation and
interpretation of mechanistic evidence.

* Corresponding author.
E-mail address: vick beck,

2303%) invokes a linear extrapolation approach as a default “in the
absence of sufficiently, scientifically justifiable mode of action in-
formation,” California's Proposition 65 regulatory provisions
routinely use determinations of cancer hazard by the International
Agency for Research on Cancer (IARC) that rely on mechanistic
information. In California, should IARC determine there is sufficient
evidence of carcinogenicity in either humans or laboratory animals,
the chemical is listed as “known to the state to cause cancer” with
accompanying warnings to the public and regulatory limits corre-
sponding to a linear low-dose extrapolation intake level posing a
107> lifetime risk of cancer (htips:/ioehiacagov proposition-65/
general-infolproposition-65-plain-language), For many chemicals,
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no consensus exists regarding integration of the available mecha-
nistic evidence; hence, the positions of organizations other than
IARC often differ from those of IARC and from each other about
whether the mechanistic data are sufficient to support a determi-
nation of human cancer hazard (Dourson of al, 2313),

USEPA's Guidelines for Carcinogen Risk Assessment (1I5E4, HHIS)
emphasize the importance of mode of action (MOA) analysis in
understanding human cancer risk and this document provides a
framework for the analysis of mechanistic data. Indeed, this
framework is consistent with the approaches of the World Health
Organization and the International Life Sciences Institute Risk Sci-
ences Institute (®eek ot al, 20773, 2004 Boobis et al, 20806 Sonich-
Rrllin o a1, 2041), The framework provides a rigorous and struc-
tured approach for determining human relevance by evaluating
evidence in both humans and animals regarding causally linked key
events in pathways leading to carcinogenic effects; in other words,
mode of action, To improve scientific justification for the use of
MOA in hazard characterization and dose-response analysis, Becks
e 3l {2171 have developed a simple scoring method for assessing
confidence in the supporting mechanistic data for hypothesized
mode(s) of action.

USEPA’s ToxCast™ program and the Tox21 federal agency
collaboration have been pioneers in high-throughput in vitro
screening {HTS), and these programs have created a wealth of
mechanistic data. Despite much effort, it is unclear whether HTS
data can inform us of potential hazards to humans (Hiil ot i, 2817,
o et al, 2008 Klebstrauer ot al, 2073), The use of these HTS data
have been incentivized by being publicly available and IARC has
recently used the data in cancer hazard evaluations. Unfortunately,
IARC does not appear to fully appreciate the difficulty in evaluating
and integrating such in vitro data for hazard assessment, despite
IARC's guidelines that encourage the Working Groups to attempt to
identify possible mechanisms from human, animal, and in vitro
data (AR Z26i60), Recently, IARC (Cuveen, 20315) has indicated how
mechanistic data can elevate causal determinations from probable
(IARC Group 2A) to known human carcinogen (Group 1), from
possible (Group 2B) to probable (Group 2A) and from not classifi-
able (Group 3) to either possible (Group 2B) or probable (Group
2A). The IARC framework (Zuvicsn, 21315) also indicates that if there
is strong evidence that a mechanism in animals does not operate in
humans, a substance could be downgraded from possible (Group
2B) to not classifiable (Group 3). It is imperative that such de-
terminations be based on rigorous objective and transparent as-
sessments and integration of mechanistic data.

In this regard, IARC has developed a judgment-based grouping
of mechanistic evidence for use in implicit causal inference. This
approach relies on ten mechanism-based key characteristics of
known carcinogens (Tabie 1) (Smith ot al, 201&), This approach has
been illustrated for two example chemicals (i.e., benzene and pol-
ychlorinated biphenyls) using chemical-specific datasets (Lauhry-
Secretan ef al, 2083, 2018 Mobale ot al, 2612), Recently, IARC
Working Groups have extended this inference approach to ToxCast/
Tox21 assay data by assigning various assays to seven of the ten key
characteristics of carcinogens using expert judgment and then
incorporating ToxCast/Tox21 results as part of the evaluation of
mechanistic evidence (Guwion, 2015, Loomms e al, 20105, IARC
Z08a by VAR, 2077), However, TARC has yet to provide any spe-
cific details of the Working Groups’ assessments of the perfor-
mance of these mechanistic assays including assay relevance,
reproducibility/reliability, specificity and domain of applicability
and predictivity. To an outside observer, the IARC process currently
appears as an ad hoc subjective evaluation of the mechanistic evi-
dence by each individual IARC working group without accompa-
nying a priori science-based ground rules or systematic guidance;
this evidence includes ToxCast/Tox21 and other data grouped into

each of 7/10 key characteristics of carcinogens. The Working Groups
then assign a descriptor of “strong,” “moderate,” or “weak” to the
mechanistic evidence, and these descriptors may then be used to
alter determinations of potential human cancer hazard.

IARC's predictions of cancer hazard could be significantly
improved by adopting a more scientifically robust approach for
integrating mechanistic evidence in lieu of the current ad hoc
method. This improvement would also apply to use of mechanistic
data such as ToxCast/Tox21 results in hazard identification and risk
assessment programs in other organizations (e.g., USEPA, NTP/
NIEHS, EChA, etc.) to strengthen the scientific foundation of de-
cisions that rely on such assessments. Resulting regulatory de-
cisions would in time come to reflect this knowledge of key
molecular and cellular responses associated with cancer patho-
genesis revealed by these 21st century technologies. The intent of
this paper is to evaluate the approach used by IARC Working
Groups involving the reliance of ToxCast/Tox21 results associated
with various key characteristics of carcinogens to inform cancer
hazard determinations.

2. Methods

A schematic summarizing the workflow of this investigation
(data acquisition, analysis and interpretation) is presented in Fig. 1.
Data rich chemicals previously evaluated by USEPA's Office of
Pesticide Programs’ Cancer Assessment Review Committee (OPP/
CARC) for carcinogenic hazard, largely based on GLP-conducted
rodent cancer bioassays using USEPA or OECD test guidelines,
were used to test the hypothesis of whether ToxCast/Tox21
mechanistic studies indicating bioactivity in one or more IARC key
characteristics can reliably distinguish carcinogens from non-car-
cinogens—the former being chemicals classified as posing a carci-
nogenic hazard to humans and the latter being those without a
human cancer hazard. Since USEPA guidelines have been updated
over the years, different guidelines have been used in classifying
the chemicals depending on the date of the assessment. Hence, for
the statistical comparisons and prediction analyses, two groups of
chemicals were used: those classified as having human cancer
hazard potential (i.e., “Known/Likely” or Group B) as positives and
substances not posing a carcinogenic hazard (i.e, “Not Likely” or
Group E) as negatives.

The rationale for drawing the dataset from USEPA classifications
and not IARC classifications is as follows, First and foremost, it is not
possible to designate sufficient negatives from IARC because IARC
Group 3 substances are described as “Not Classifiable as to Its
Carcinogenicity to Humans” and IARC has only designated a single
substance as “Group 4, Probably Not Carcinogenic to Humans”
(herps{fmonographssarc T ERG Classification1IARD), Therefore,
since USEPA is considering using the ten key characteristics of
carcinogens within their evolving systematic review procedures
(LISEPA, Z2015; USEPA, 2417), and USEPA has an extensive set of
robust, data-rich chemical evaluations within its Office of Pesticide
Programs {OPP), the dataset for analysis was drawn from USEPA’s
Annual Cancer Report 2016 (LiSEPA, 2{¥15), This report summarizes
the weight of evidence classifications of official regulatory de-
terminations of carcinogenic hazards to humans (LUSEPA, 20318).
ToxCast/Tox21 data are available for 194 substances classified by
USEPA as “Not Likely to be Carcinogenic to Humans” and “Group E-
Evidence of Noncarcinogenicity for Humans.” Thus, for this dataset,
there are a sufficient number of substances that can be used as
“negatives” for prediction modeling and analysis. Only one sub-
stance with ToxCast/Tox21 data (diuron) in the LISEFA 2{+6 Annual
Cancer Report is characterized as “Known/Likely” and this sub-
stance was included in our analysis as a “positive,” since it was
classified as “Likely.” While the “positives” dataset could have been
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Table 1

The 10 key characteristics of carcinogens described by Hmiith «f al.

#4315) and used in IARC Monographs 112 (3AEC, Z3317) and 113 (3A%, 20388,

Key Carcinogen Characteristic

IARC's Assignment and Use of ToxCast Data

1) Is Electrophilic or Can Be Metabolically Activated to Electrophiles
2) Is Genotoxic

3) Alters DNA Repair or Causes Genomic Instability

4) Induces Epigenetic Alterations

5) Induces Oxidative Stress

6) Induces Chronic Inflammation

7) Is Immunosuppressive

8) Modulates Receptor-Mediated Effects

9) Causes Immonrtalization

10) Alters Cell Proliferation, Cell Death or Nutrient Supply

9 ToxCast assays associated with this characteristic®
31 ToxCast assays associated with this characteristic
No ToxCast assays could be associated with this characteristic
11 ToxCast assays associated with this characteristic
18 ToxCast assays associated with this characteristic
45 ToxCast assays associated with this characteristic
No ToxCast assays could be associated with this characteristic
92 ToxCast assays associated with this characteristic
No ToxCast assays could be associated with this characteristic
68 Tox(ast assays associated with this characteristic

2 All 9 assays are p53 constructs. Although these p53 ToxCast data were used in IARC Monograph 112, in the subsequent Monograph 113, the p53 assay results and
the characteristic Is Genotoxic were not included in the Monograph analysis section “Aligning in-vitro assays to the 10 “key characteristics” of known human

carcinogens.”

ToxCast/Tox21
HTS Data Retrieval
and Preparation .
for Analyais e

» Identify USEPA classified carcinogens with HTS data, download data & adjust for the
activity burst phenomena {e.g., cytotoxicity)
Binary assignment of activity of eac
Sort using 1ARC’s assignment of assays to 7 Key Characteristi

chemical in 2ach HTS assay (hit/no hit)

cs of Carcinogens (KOG}

Analysis of HTS

Data for 7KCC o
Predict Cancer |,

Classifications

» Uss EPA cancer classifications to designate pasitives {chemicals
having @ cancer hazard potential} and negatives {chemicals not
nosing a carcinogenic hazard)

Conduct extensive statistical analysis of data sets

+ Use machine learning algorithms to evaluate predictiveness

.

and

Results

Evalyate

Interpret

e ToxCast/Tox21 HTS data for the 1ARC
assigned 7 Key Charactaristics of
Carcinogens were no etter than chance
alone in predicting cancer

Fig. 1. Schematic summarizing the workflow of this investigation (data acquisition, analysis and interpretation).

augmented by including the chemicals in IARC Group 1 and Group 2
that are not part of USEPA’s Annual Cancer Report 2016, we elected
not to do so, primarily because of known differences in the weight
of evidence procedures for cancer evaluation used by IARC and
USEPA. Most importantly, USEPA uses a transparent and compre-
hensive weight of evidence process that typically includes public
comment and independent peer review procedures, whereas JARC
decisions employ strength of evidence evaluation procedures
(Boobis et al, 2018) within closed meetings of selected invited
experts.

2.1. Assays and key characteristics

We used the IARC Working Group’s assignment of specific as-
says to the key characteristics in this analysis ({AH{, 2317). Notably,
we did not conduct an independent evaluation of the assays nor did
we independently assign assays to the key characteristics. The ten
key characteristics (Soiith e s, 2{318) and the number of assays
assigned to each key characteristic ({AR{, 20315k, 2017) are sum-
marized in Tabs 1, IARD (20050, 2077) identified relevant ToxCast/f
Tox21 assays for 7 of the 10 IARC key characteristics; no ToxCast/
Tox21 assays were associated by IARC with the following charac-
teristics: alters DNA repair or causes genomic instability; is
immunosuppressive, and; causes immortalization. Hence in this
analysis we only address these seven key characteristics; (1) Is
electrophilic or can be metabolically activated to electrophiles; (2)
Is genotoxic; (4) Induces epigenetic alterations; (5) Induces
oxidative stress; (6) Induces chronic inflammation; (8) Modulates

receptor-mediated effects; and {10) Alters cell proliferation, cell
death or nutrient supply.

ToxCast/Tox21 data for 54 chemicals meeting the criteria as
positives and 194 chemicals meeting the criteria as negatives were
compiled from USEPA's online ToxCast/Tox21 summary files and
grouped to each key characteristic for the seven key characteristics
(data accessed and downloaded on 9 August 2016).

2.2. Accounting for cytotoxicity

Cytotoxicity and non-specific responses present major chal-
lenges for interpreting ToxCast/Tox21 chemical-assay combina-
tions. To date, all of the IARC Working Groups’ analyses have been
conducted without considering the concentration-dependent burst
activity phenomenon described by fudson of all { 2316]; this phe-
nomenon is observed both in cell-free biochemlcal assays and as
cytotoxicity in cell-based assays. Recently, several cytotoxicity as-
says within ToxCast have been used to screen individual substances
and develop concentration thresholds to distinguish specific ac-
tivity of a chemical from high concentration, non-specific effects
(Judson et al, 2015). IARC did not adjust for cytotoxicity, and we
initially analyzed the ToxCast/Tox21 dataset without this adjust-
ment for consistency with IARC (see Supplemenial Material),

Based on comments and suggestions on the initial analysis, we
conducted and herewith present the identical analysis conducted
on a dataset adjusted for the activity burst phenomena. The
adjustment selected hits below a cytotoxicity threshold previously
defined by judson 1 2, (20316), For each chemical, cytotoxicity was

ED_002435_00006475-00003



188 RA. Becker et al. / Regulatory Toxicology and Pharmacology 90 (2017) 185—-196

defined by 33 related assays, where a hit in 2 or more assays was
designated as an active burst response. The burst region for each
chemical was equal to 3 times the global median absolute devia-
tion, which also comprised the lower bound cytotoxicity threshold.
Hits below this threshold were selected to adjust for burst activity.

Not all assays were run for each chemical, hence different
numbers of assays were assigned to each characteristic and the
overall dataset necessarily contained null data. Most of the analyses
were conducted on the percent activity for each chemical within
each key characteristic. This was determined by dividing the hit
count by the total number of tested assays. For consistency with
some of the analyses of H:ll et 21 {30317, we also used assay hits per
chemical as a measure of overall activity. A summary of these data
is provided in Excel spreadsheets, as part of the Supplemenial
hiatorial,

2.3. Statistical analysis methods

First, we compared the distribution of assay hits per chemical
over all the assays for substances classified as having human cancer
hazard potential to substances not posing a carcinogenic hazard
using the Kolmogorov two-sample test (e.g., Hili i al., 2017). We
next attempted to segregate both the percent activity results and
hit calls per chemical by key characteristic and explored differences
between chemicals based on assay results using plots of empirical
cumulative distribution functions (CDFs) for each characteristic, We
then examined whether principal component analysis could reveal
a difference between positives and negatives based on hit calls for
all seven key characteristics. To explore similarities/differences of
responses of positives and negatives based on key characteristic or
individual assay hit calls, we used the Jaccard similarity index, a
method similar to the Tanimoto index for cheminformatic simi-
larity (hrpsfpubchemuebinimonih.goviscore_matrig/soore
matrig-help himi), Using the Predictive Analytics Toolkit (PAT.
28:17), a free Excel add-in that provides a point-and-click inter-
face for conducting advanced prediction analysis from Excel using R
packages, we then applied statistical and machine-learning algo-
rithms for detecting, quantifying and visualizing dependencies
between assay results and cancer classifications, including logistic
regression and correlation, classification and regression trees
(CARTs), Bayesian networks, and model ensembles (Random Forest
ensembles of CART trees). This was followed by exploration of
black-box predictive analytics algorithms, using the PAT, to maxi-
mize predictive power without considering interpretability of the
underlying models. These statistical methods are described briefly
below in Talsle 2; Full details of the methods are available in the
Supplemental Material,

3. Results

The results of our statistical and prediction modeling analyses
are briefly summarized in Tahiz 2 for the dataset adjusted for the
activity burst effect; results for the unadjusted dataset are pre-
sented in the Suppiernensal Marerial Overall, the results indicate
that, for the current ToxCast/Tox21 assays and datasets, predicting
cancer based on data for the seven key characteristics, either alone
or in combination, is fundamentally no better than chance—-
whether or not adjustment is made for the activity burst
phenomena.

3.1 Statistical analyses
Table  provides the summary descriptive statistics for assay hits

per chemical over all the assays for the adjusted data, similar to the
data representation in Hiil et al, {2017, The distributions of assay

hit calls for both positives and negatives are not normal and contain
a high proportion of zeros. Similar to Hill er 5l {2017}, the Wilcoxon
rank sum test was used to determine if the distributions for posi-
tives and negatives were statistically different—they were not for
either cytotoxicity-adjusted data or unadjusted data. Using percent
activity within each key characteristic complicates the choice of
statistical tests because of the large numbers of zeros and ones and
the ranking methodology used in the Wilcoxon test, Hence, the
Kolmogorov-Smirnov (KS) two-sample test is likely the most
appropriate test for determining any difference between the dis-
tributions of percent activity values for positives and negatives
(Bakal and Bohil 19871).

The empirical cumulative distributions (CDF) for each of the
seven key characteristics from the dataset adjusted for the activity
burst phenomena are plotted in ¥ig, ¥; these data were analyzed
using the Kolmogorov-Smirnoff two sample test. None of the seven
distribution pairs were significantly different for the dataset
adjusted for the activity burst phenomena. The analysis of the
ToxCast/Tox21 dataset unadjusted for the activity burst phenomena
showed four of the distribution pairs were not significantly
different, while the remaining three distributions pairs showed
significantly greater ToxCast/Tox21 activity for chemicals classified
as not having a human cancer hazard potential (see Supplementat
Riarerial), Similarly, a principal component analysis was also un-
able to distinguish positives from negatives over all seven key
characteristics {¥ig. 3; Supplemental Material for the data not
adjusted for the burst phenomenon).

If the seven IARC key characteristics were predictive of carci-
nogenicity, then using another mapping technique, Jaccard simi-
larity analysis, chemicals classified as having a human cancer
hazard potential should segregate from the non-carcinogen/not
likely carcinogens. However, as shown in Fig. 4, for the dataset
adjusted for the activity burst phenomena, there is no readily
apparent separation, Similar results were found for the dataset that
was not adjusted for the burst activity (Suppiermenial Material),

3.2. Regression analysis and analysis using machine learning
prediction algorithms

Tabie 4 presents the partial correlation coefficients obtained by
correcting the correlation between each pair of variables for the
levels of other variables using linear regression. For the dataset
without adjustment for the burst phenomena, “Induces Oxidative
Stress” was the only key characteristic significantly correlated with
a positive carcinogenic hazard. However, in the analysis conducted
on the dataset adjusted for the activity burst phenomena (e.g.,
cytotoxicity), this statistical significance ceased to exist (Fzizie 4);
none of the key characteristic were significantly correlated with
having a positive cancer hazard potential at a p-value of <0.05. For
the dataset adjusted for the activity burst phenomena, proliferation
is a borderline significant predictor with a p value of 0.09.

Bayesian Network (BN) analysis (Fig. %), where the arrows be-
tween any two nodes indicate a probability relationship of the two
nodes, indicated a number of the key characteristics as significantly
associated with one another for both the datasets. For example, for
both datasets, the associations among “Oxidative Stress” and
“Epigenetic Changes” and “Chronic Inflammation” were statistically
significant. Nevertheless, similar to the linear regression analysis,
for the dataset not adjusted for the activity burst phenomena, the
BN analysis only identified “Induces Oxidative Stress” as the key
characteristic significantly linked with a positive carcinogenic
hazard {¥ig. 3a), but this relationship ceased when the dataset that
was adjusted for the activity burst phenomena was analyzed
(Fig. 5b).

For both CART tree analysis and logistic regression, yet again,
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Table 2
Summary of the analysis methods and results.

Descriptive Statistics of Assay Hit Calls per Chemical Across All Key Characteristics”

Purpose: Compare overall results across all assays in a fashion similar to that of Hilf 2t &1 {2017} to determine if substances classified as having human cancer hazard
potential differed in ToxCast/Tox21 overall bioactivity from substances not posing a carcinogenic hazard.

Results: The Kolmogorov-Smirnov two sample test was used and no significant difference was found between these assay hit calls per chemical for positives and negatives
in the cytotoxicity adjusted results with considerable certainty (p = 0.9977).

Kolmogorov-Smirnov Test of Empirical Cumulative Distributions Functions (CDFs)®

Purpose: Compare the CDFs (at the point of maximum discrepancy and the shapes of the CDFs) for each of the seven key characteristic to test the null hypothesis (i.e., to
determine if the CDFs for the ToxCast data pairs for each key characteristic are statistically different).

Results: For the seven distribution pairs, the CDFs for the key characteristics for negatives were not different than the corresponding CDFs for positives. There was no
meaningful difference between the ToxCast/Tox21 results for chemicals classified by EPA as having cancer hazard potential and substances EPA has determined do not
pose a carcinogenic hazard. These results are highly certain (using p < 0.05 to determine a statistically significant difference, the calculated p values ranged from 0.33 to
1.0).

Principal Component Analysis (PCA)*

Purpose: PCA provides a means of visualizing multivariate data using a small number of factors normalizing to the mean value across the items being compared—in our
case, two sets of chemicals. This method provides a means to compare variation of large datasets and visualize differences in the two datasets.

Results: The first three principal components with factor loadings based on the characteristics indicate that the PCA cannot clearly separate positives from negatives into
distinct groups; no meaningful difference was seen between the ToxCast/Tox21 results for chemicals classified by EPA as having cancer hazard potential and substances
EPA has determined do not pose a carcinogenic hazard. For the set of 248 substances considered here, the first three principal components accounted for almost 93% of the
total variance in the data. On a 3D plot, however, no segregation of positives and negatives was observed.

Jaccard Similarity Analysis®

Purpose: To compare the similarity (and diversity) of the ToxCast results for each of the seven key characteristics of the negatives to the corresponding results for the
positives. The Jaccard coefficient (ranging from 0 to 1), which measures similarity between pairs of chemicals based on the set of key characteristics. The Jaccard coefficient
is similar to the Tanimoto metric used for cheminformatics similarity. For each pair of chemicals, the Jaccard coefficient is defined as the size of the intersection of the
datasets divided by the size of the union of the datasets. If the 7 1ARC key characteristics were predictive of carcinogenicity, then the positives should segregate from the
negatives on the map (the Jaccard coefficient would approach 0).

Results: Similar to the results from PCA, there is no readily apparent separation of the positives and negatives; no meaningful difference was noted between the ToxCast/
Tox21 results for chemicals classified by EPA as having cancer hazard potential and substances EPA has determined do not pose a carcinogenic hazard.

Logistic Regression and Correlation

Purpose: To measure the relationship between the categorical dependent variable (ToxCast results for chemicals classified by EPA as having cancer hazard potential) and
the key characteristics as independent variables by estimating probabilities using a logistic function. Partial correlation coefficients were obtained by correcting the
correlation between each pair of variables for the levels of other variables using linear regression.

Results: None of the key characteristic were significantly correlated with the chemicals classified by EPA as having cancer hazard potential. These results are highly certain
(using p < 0.05 to determine a statistically significant difference, the calculated p values ranged from 0.09 to 1.0).

Classification and Regression Trees (CARTS)

Purpose: Machine-learning methods were used for constructing prediction models from ToxCast data. The models were developed using decision trees based upon the
ToxCast data for the seven key characteristics of the positives and negatives. The tree structure is applicable to any number of variables, and models are evaluated in terms
of their ability to predict the class to which the data belongs.

Results: The CART tree analysis for the dependent variable (i.e. chemicals classified by EPA as having cancer hazard potential) did not identify any of the seven key
characteristics as a significant predictor of being classified as a carcinogen.

Bayesian Network Analysis

Purpose: To evaluate the probabilistic relationships between the ToxCast data and the seven key characteristics of carcinogens. All seven key characteristics and ToxCast
data were assembled into a conditional probability table and machine learning algorithms were used to perform inference and learning in Bayesian Networks (BN) to
characterize the maximum a posterori probability that ToxCast results can predict carcinogenicity.

Results: Although a number of the key characteristics were seen to be significantly correlated with one another for both the datasets. For the BN models developed from
the ToxCast/Tox21 data for the seven key characteristics were not able to predict carcinogenicity. These results are highly certain at a p-value of <0.05.

Model Ensembles (Random Forest Ensembles of CART Trees)

Purpose: Employ Random Forests analysis (an algorithm and computational procedures) to investigate and discover complex nonlinear yelationships between explanatory
(ToxCast data for each of the seven key characteristics) and outcome variables (chemicals classified by EPA as having cancer hazard potential and substances EPA has
determined do not pose a carcinogenic hazard).

Results: No predictive relationships were observed, with the exception that there was a statistically significant association, threshold-like nonlinearity, between pro-
liferation and the probability of being a chemical classified by EPA as having cancer hazard potential (based on Spearman's rank correlation of 0.54 and p-value 0.00)
Black-Box (BB) Classification and Regression Predictive Modeling

Purpose: Using machine learning to develop predictive mathematical models based on the EPA classifications of carcinogenic potential and the ToxCast data and the seven
key characteristics of carcinogens. Disjoint training and test subsets of the data were automatically created and multiple models (including CART trees and random forest
ensembles) were fit to the training data and then evaluated on the test set.

Results: None of these automated predictive modeling algorithms performed well on the test set. The BB models developed from the ToxCast/Tox21 data for the seven key
characteristics were not able to predict carcinogenicity.

2 Because not all assays in each characteristic were tested for each chemical, the dataset necessarily contained nulls. For the XS test, PCA and Jaccard similarities, the methods
were adjusted specifically to take into account the presence of null data.

Table 3
Summary descriptive statistics for assay hit calls for positives and negatives from the
dataset adjusted for the activity burst phenomenon.

was adjusted to account for the activity burst phenomena, none of
the seven key characteristics were identified as a predictor of car-
cinogenicity {Taiziz 5). A similar pattern was observed with Random

Assay Hits Per Chemical ~Mean  Standard Deviation ~ Count  Median Forest analysis (an ensemble of CART trees fit to random samples of
Positives 274 2.7 54 245 the full data set). For the dataset adjusted for activity burst phe-
Negatives 19.7 20 194 11.5 nomena, a partial dependence plot revealed a threshold-like

nonlinearity between oxidative stress and probability of posing a
carcinogenic hazard. After adjustment for the activity burst effect,
this relationship with oxidative stress ceased, and a statistically
significant threshold-like nonlinearity between proliferation and

without adjustment for the activity burst phenomena, oxidative
stress was the only significant predictor ( ¢ %) and only at

relatively high activity levels (>0.438), which are attained by only 9
of 248 chemicals (Bappiemental Material) and for the dataset that

the probability of posing a carcinogenic hazard was observed (see
Supplerneral Matenal for details). Consistent with the foregoing

ED_002435_00006475-00005



190

RA. Becker et al. / Regulatory Toxicology and Pharmacology 90 (2017) 185—-196

P
=

Doty Rty
oA
2

is Electrophilic or
Can Be Metabolically Activated

8o 2 g4 P23 B3 Qe & BeRs s %
Oty

NI RO
e

induces Epigenetic Alterations

P
GonEaaEg

e gy
e
SR

ls Genotoxic

Induces Oxidative Stress

ORISR YRR,
gy
& Fo

i
&

w

< o o < o o o7
b

induces Chronic inflammation

SN RO

5

&

o
&

o
&

“

Madulates Receptor-Mediated FX

. 05 a3 2tk 2% I o3 RI&% S K N5 P e w D a2 Ry 2
B84 LS

T N — R KS Test Results
3 _ 1) Electrophilic, ns, p = 0.9995
2) Genotoxic, ns, p = 1.000
3) Epigenetic, ns, p = 0.9917
- : 4) Oxidative Stress, ns, p = 0.2450
: 5) Inflammation, ns, p = 0.9983
6) Receptor FX, ns, p = 0.3287
7) Proliferation, efc., ns, p = 0.3749

SUmRING sy
Somaggay

o
5

Alters cell proliferation, cell death,
or nutrient supply

(o () e e &1 AN a5t ]
Sisss

% Activity calculated from assay results
corrected for cytotoxicity

&

Fig. 2. Empirical cumulative distributions of percent activity for chemicals classified as having a human cancer hazard potential (designated L and plotted in red) and chermicals
classified as having a human cancer hazard potential from those that do not pose a carcinogenic hazard (designated UL and plotted in biue) for each of seven key characteristics from
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results, using black-box predictive analytics, in which disjoint 4. Discussion
training and test subsets of the data were automatically created and
multiple models (including CART trees and random forest ensem-
bles) were fit to the training data and then evaluated on the test set,
none of these automated predictive modeling algorithms per-
formed well on the test set, with or without adjustment for the

activity burst effect (see Suppiemental Material for details).

A great deal of research attention has focused on establishing
confidence in HTS assays (such as ToxCast/Tox21) as markers for
complex apical biological responses such as chemical carcinogen-
esis, Some scientists passionately champion, some merely hope for,
whilst others decry the idea that these HTS assay outputs may
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principle components are:

1 Electrophilic {(44.0%)

2 Genotoxic {33.8%)

3 Epigenetic (8.5%)

4 Oxidative Stress (7.8%)
§ inflammation {3.5%)

6 Receptor FX {1.3%)

7 Proliferation, etc. (1.0%)

Fig. 3. Three dimensional plot of the Principal Component Analysis (PCA) results including all seven key characteristics for the chemicals classified as posing carcinogenic hazard
(red filled circles) and chemicals that do not pose a carcinogenic hazard (blue x-marks) from the dataset that was adjusted for the activity burst effect.

facilitate more rapid and economical identification of chemical
toxicities. Scientific datasets from ToxCast/Tox21 HTS assays along
with existing evaluations of chemical cancer hazards offer unique
opportunities to develop and evaluate hypotheses related to the
use of HTS data for hazard characterization.

4.1. ToxCast/Tox21 data cannot reliably distinguish or predict
chemicals that pose a carcinogenic hazard

Our extensive analysis stands in contrast to the implied infer-
ence model, or supposition, that ToxCast/Tox21 assay results are an
indication of biological activity underpinning mechanisms that can
be causally related to classifying potential carcinogenic hazards to
humans., We found no statistically significant differences in Tox-
Cast/Tox21 responses for the seven IARC key characteristics of
carcinogens between “positives”—substances determined to have
human cancer hazard potential-—and “negatives”—substances that
pose no cancer hazard. The only exception was for the ToxCast/
Tox21 dataset unadjusted for cytotoxicity; for that dataset, oxida-
tive stress was the sole predictor in a few of the analyses and the
predictive power was marginal. However, after adjusting for cyto-
toxicity, the predictiveness of this key characteristic ceased. Overall,
for this dataset, we cannot reject the null hypothesis that the seven
IARC key characteristics represented in ToxCast/Tox21 assay results
fail to differentiate substances USEPA classifies as having cancer
hazard potential from substances not posing a carcinogenic hazard.

To date, taken collectively, most results (and models) indicate

that ToxCast/Tox21 assays fall short in reliably predicting human
cancer risk classifications. The results reported herein are consis-
1
(30E, d0n4), Coxoet al {30418} and the recent report from Hill
ef al, (2417, Similar to our study, i} 2t al {2417 also used Tox-
Cast assay hit-calls and cancer classifications from USEPA's OPP to
evaluate the ability of HTS results to predict cancer. Hiil ¢f ai, 2017
did not aggregate results for characteristics of carcinogens, but
rather grouped the ToxCast HTS assays into three categories: all
assays, all cancer-related assays as identified by ¥leinstreusy ot al
{24413}, and assays that targeted cytotoxicity as an endpoint. Us-
ing ToxCast data that excluded activity within the burst region, Hiki
et al. {2017} demonstrated that neither all assays (HTS hits per
chemical) nor HTS results for cancer-related assays were capable of
distinguishing USEPA’s “probable/likely” carcinogens from “not
likely” carcinogens. Only one comparison reported by Hill and
colleagues was significant—for the HTS cytotoxicity category, the
number of hits per chemical was greater for the substances deemed
by USEPA as “probable or likely” carcinogens. Moreover, Hilt ot al,
{28177 confirmed the determination of w #t al, (3{Fi5} that the
prediction modeling reported by Hleinstreusy ot al 13} corre-
lating cancer pathway bioactivity scores based on ToxCast data with
in vivo carcinogenic effects in rodents was questionable, and, for the
most part, is no better than chance alone,

In the dataset lacking the adjustment for the burst phenome-
non, the predictive power of oxidative stress was statistically sig-
nificant in a limited number of analyses; these relationships,
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Fig. 4. Network visualization map of chemicals classified as posing carcinogenic hazard (red) and those that do not pose a carcinogenic hazard {blue) based on the similarity of hit
call pattern of each chemical for the seven key characteristics from the dataset that was adjusted for the activity burst effect. The 54 positives are interspersed with the 194
negatives; whereas if the key characteristics provided a means of distinguishing carcinogens from non-carcinogens, segregation of positives and negatives over the two-dimensional

map space would be expected.

Table 4

Partial Correlations between the key characteristic and whether a chemical is a likely carcinogen (i.e., chemical classified as posing carcinogenic hazard) or unlikely carcinogen

(i.e., chemical that does not pose a carcinogenic hazard).

Partial Correlations of Key Characteristics With “Likely” (classified as having cancer hazard potential)

Characteristic Partial Correlation value (p value)
Dataset adjusted for activity burst phenomena Dataset not adjusted for activity burst phenomena

Likely 1.000 (0.00) 1.000 (0.00)

Electrophilic 0.0635 (0.34) —0.116 (0.07)

Genotoxic -0.0929 (0.17) —0.031 (0.63)

Epigenetic -0.0249 (0.71) 0.041 (0.53)

Oxidative ~0.0041(0.95) 0.136 (0.03)*

Inflammation 0.0569 (0.40) 0.024 (0.71)

Receptor 0.0003 (1.0) ~0.014 (0.83)

Proliferation 0.1128 (0.09) 0.077 (0.23)

*significant <0.05.

however, ceased when the dataset was adjusted for the burst
phenomenon. These findings indicate considerable caution needs
to be exercised when evaluating ToxCast/Tox21 results for assays
determined to be relevant to the key characteristic of oxidative
stress, Bus {20314) analyzes and discusses in detail the challenges in
the use of oxidative stress as a key characteristic and documents
limitations of the IARC cancer hazard evaluation of glyphosate that
used published studies to infer strong evidence of oxidative stress.
For example, the IARC Working Group examining mechanistic data
for glyphosate ignored toxicokinetics and uncritically relied on
in vitro studies in which the test concentrations could not have

been physically attained in any in vivo animal test, much less
humans. Although the reliance on ToxCast/Tox21 oxidative stress
results by the IARC Working Groups engaged in Monographs 112
and 113 appears to have been limited, the fact that the data was not
adjusted for the burst activity effect should be noted. In the future,
given the relationship between high-dose cytotoxicity, the activity
burst phenomenon and ToxCast/Tox21 assays deemed indicative of
the characteristic of oxidative stress, it is imperative that adjust-
ment for the burst phenomenon be conducted in advance of
interpreting results as supporting evidence of activity relevant to a
cancer hazard for humans.
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Table 5
Logistic regression results.
Central Estimate Standard Error z Value Pr(>|z}) Central Estimate Standard Error z Value Pr(>|z})
Dataset not adjusted for activity burst phenomena Dataset adjusted for activity burst phenomena
(Intercept) -1.6373 0.2722 —-6.0 2.00E-09% -1.56 0.24 -6.5 8e-11 **
Electrophilic —1.0140 0.5566 -18 0.07 0.90 0.99 0.9 04
Genotoxic —0.4938 0.9866 -05 0.62 -3.77 3.10 -1.2 02
Epigenetic 0.4011 0.6919 0.6 0.56 -0.84 239 -04 0.7
Oxidative Stress 3.1672 1.5714 2.0 0.04* -0.17 271 -0.1 1.0
Inflammation 11101 2.8550 04 0.70 230 3.10 0.7 0.5
Receptor Mediated 0.0011 2.6923 0.0 1.00 0.36 512 0.1 0.9
Proliferation 23721 1.9643 1.2 023 12.73 7.87 1.6 0.1

**significant < 0.001 *significant <0.05.

Similarly, the ToxCast assays mapped to the characteristic “Is
Genotoxic” comprise only 9 assays, all of which are P53 constructs.
Although these p53 ToxCast/{Tox21 data were used in JARC Mono-
graph 112, in the subsequent Monograph 113, the p53 assay results
and the characteristic “Is Genotoxic” was dropped from the Tox-
Cast/Tox21 section of the analysis; only ToxCast data mapped to the
remaining six key characteristics were used in this section.
Although Monograph 113 provided no explanation for the state-
ment “no assay [ToxCast/Tox21] end-points were mapped to this [Is
Genotoxic] characteristic,” it seems likely that the IARC Working
Group for Monograph 113 concluded that 9 assays all focusing on
P53 did not robustly represent this key characteristic.

Coodman and Lynch {2817} have criticized the IARC processes
for integrating mechanistic evidence used by the Working Groups
as lacking rigor and transparency. In conducting this analysis, we
confirmed that the assignments of various Tox21/ToxCast assays to
key characteristics, the process IARC follows for integrating Tox-
Cast/Tox21 data {and/or other mechanistic evidence), and the
criteria for characterizing the totality of mechanistic evidence as
“strong,” “moderate,” “weak,” or “inadequate” for each character-
istic have not been explicitly documented and apparently have not
been subjected to independent scientific peer review/publication in
the open scientific literature. This lack of transparency and scien-
tific rigor, taken together with our findings that ToxCast/Tox21 re-
sults for the seven IARC key characteristics fail to differentiate
carcinogens from non-carcinogens, raises doubts about the

(Y

proposed use of such mechanistic evidence for elevating human

cancer hazard classifications ({uyving, 2015),

4.2. Challenges Using ToxCast/Tox21 data and key characteristics of
carcinogens

An important limitation of HTS-based prediction modeling
stems from the fact that the ToxCast/Tox21 assays themselves have
not, for the most part, been specifically designed to evaluate key
steps or stages of the pathogenesis of chemically-induced cancer.
Srrsth ot al, {2016 reported that, at the initial 2012 IARC workshop,
invited experts identified twenty four mechanistic endpoints, each
with a number of subcategories, and then at a subsequent work-
shop, the invited participants merged a number of the character-
istics to arrive at the ten key characteristics. Although not evaluated
by IARC or here, for each key characteristic, the extent of variability
of results within and across ToxCast/Tox21 assays, as well as the
sensitivity, specificity and domain of applicability of each ToxCast/
Tox21 assay, are important elements to take into account for both
implied and explicit inference. Even though the IARC Working
Groups were presumably able to assign ToxCast/Tox21 assays to the
key characteristics, a number of questions have yet to be fully
addressed, such as; How well do the assigned assays reflect the
underlying biology or mode of action? How well do the key char-
acteristics actually represent cancer pathogenesis? What set of key
characteristics and assays are optimal?
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Although Hanahan and Weinberg (3000, Z011) provide
considerable insight into the nature of cancer pathogenesis by
identifying biological hallmarks, the authors emphasize that iden-
tification and confirmation of the hallmarks is still a work in
progress. For example, inflammatory response is identified as an
emerging or enabling characteristic by Hanahap and Weinbewg
{2011 and Smith g1 al (2818} identify the ability to induce
inflammation as a charactenstic of carcinogens, but whether
inflammation is a causative factor for later hallmarks or a result of
earlier hallmarks remains an open question.

A limitation of this analysis is that only ToxCast/Tox21 data were
considered, whereas in the recent IARC evaluations, results from
other mechanistic assays have apparently been included. Never-
theless, the work described here and other studies demonstrate
that the current battery of HTS assays does not yet produce data
that can reliably predict carcinogenic hazard (Thaomas «8 ab, 2012,
Coxoef al, 2010, Hill o1 al, 2(17). As the understanding of cancer
MOAs progresses and new assay technologies are developed,
endpoint-specific suites of assays and computational methods that
reflect both toxicokinetics and cellular pathways may allow for
better predictive performance. At the present time, one cannot
conclude from in vitro studies alone using assays currently mapped
to characteristics of carcinogens that one or multiple molecular
mechanisms are likely to be operative in inducing cancer or
creating a cancer hazard. At most, the ToxCast/Tox21 data can
indicate the potential for a chemical to interact with one or more
biological pathways. But interaction at a molecular or cellular level
is not the same as causation of an adverse effect such as cancer
in vivo,

A common goal of the ToxCast/Tox21 program and the Adverse
Outcome Pathway (AOP) effort is to discover which specific assays
reflect initial molecular events or early key events within biological
pathways (Labone of al, 2017, van Silsen et gl 2017). While many
of the HTS assays have been designed to be exquisitely sensitive,
these assays are uncoupled from the normal physiological net-
works that occur in vivo and therefore lack appropriate biological
context (e.g. Bhmon ot al, 215). Such cellular pathways and net-
works involved in homeostasis can have “clear-cut, mechanistically
definable thresholds” or tipping points (Zhang et al, 2014). The
concept of “molecular tipping points” and the idea that detection of
bioactivity within early key events may not necessarily lead to the
manifestation of an adverse ocutcome is made abundantly clear in a
comprehensive analysis of the MOA of phthalate-induced liver tu-
mors in mice by activation of PPARa (Lake ¢t al, 2141%), The concept
of dose-dependent tipping points is intrinsic to key event re-
lationships and necessary to fully understand the role of these early
key events within pathways of cancer pathogenesis (3halr ¢f al,
#¥i:), Use of binary hit calls to encode assay results instead of
expressions of potency and efficacy ignores both the idea of
“tipping points” and what other later obligatory key events must
occur for cancer progression. While the hallmarks of cancer are
reflective of events within both normal homeostatic mechanisms
and cancer pathogenesis, the use of binary hit calls as an indicator
of relevant activity in such pathways is likely too generalized as it
ignores important differences in dose and potency, and dose-
dependent transitions (&ikier ei al, 20804) that distinguish
normal physiology from pathological processes. Thus, approaches
such as those of IARC which appear to use mechanistic evidence,
including ToxCast/Tox21 data, are flawed and misleading because
they do not explicitly integrate dosimetry, temporality, and cau-
sality inherent in key event relationships.

4.3. Opportunities to address the challenges

Our results should not be interpreted to suggest that

mechanistic data have no role to play in informing determinations
of potential carcinogenic risks of chemicals to human. Rather, the
findings demonstrate an urgent need for explicit, transparent, and
scientifically robust procedures to evaluate the relevance and reli-
ability of mechanistic datasets and the process of integrating
mechanistic results with extant animal toxicity findings and human
epidemiology. Gaondman and Iyneh {2017) reached a similar
conclusion, recommending that IARC develop and apply “explicit
guidance for how to consider the totality of the mechanistic evi-
dence, including study strengths and limitations ....,” noting that
“[A]dopting a systematic approach for evaluating and integrating
mechanistic evidence with the other realms of evidence will allow
for hazard classifications that are scientifically defensible and
appropriate for regulatory decision-making.”

The scientific conﬁdence framework (Cox o al, 284, Patlewics
e al, 215 and Tox 2v al, 2046) designed to aid in developing,
evaluating and communicating the scientific confidence in Tox21
assays and their prediction models was derived in part from
guidance on the use of biomarkers in medicine (i3ki, 281,
Adoption of such a framework should be considered to enhance the
rigor and transparency of the IARC process for integration of
mechanistic evidence. The elements of this scientific confidence
framework are; (1) Analytical validation of mechanistic assays that
includes documentation of the biological basis and analytical per-
formance of assays, including reliability, sensitivity, specificity and
domain of applicability for all assays; (2) Qualification of inference
or prediction models based on mechanistic assays, a transparent
characterization that includes explicit decision criteria, decision
logic or a defined algorithm for each evidence integration model,
appropriate measures of goodness-of-fit, robustness and perfor-
mance documentation in sufficient detail to facilitate review,
reconstruction and independent verification and replication of re-
sults; and (3) Utilization, a specification of the confidence that
supports the fithess inference decision criteria, decision logic or
prediction model derived from mechanistic assays for a specific
purpose or use. For all three aspects of this framework, the scien-
tific justification underpinning the use for a specific decision
context requires documentation with sufficient detail to enable an
independent scientific reviewer to replicate the analysis.

Another reason the IARC approach falls short is that it does not
explicitly incorporate understanding of the causal linkages of the
sequence of key events and biological responses (including dose-
response and temporal relationships) involved in carcinogenesis.
For incorporating mechanistic data into cancer hazard evaluations
we specifically recommend adoption of the AOP ({38, 2415) o
MOA framework (Ieek #f al, 2{14) that articulates toxicity path—
ways comprised of sequences of key events, starting with an initial
molecular event, followed by a series of key events linked to one
another, ultimately resulting in a specific adverse outcome {#ieck
e al, 201%, 2{14). Mechanistic and observational datasets can
then be organized and aligned with corresponding key events and
key event relationships, and defined Bradford Hill causal consid-
erations can be applied to assess biological plausibility, essentiality
and empirical evidence (Becker et al, 3017, Meek ot gl 2019, 201,
CWCER 3615), Furthermore, adoption of the recently developed
causal analysis scoring approach for evaluating the weight of evi-
dence of potential cancer MOAs (ke ¥17), built from the
WHO/IPCS MOA framework, would pr0v1de a systematic and
transparent approach for evaluating a chemical dataset, including
mechanistic data, using hypothesized MOAs and the evolved
Bradford Hill causal considerations for integrating evidence, This
quantitative confidence scoring approach facilitates side by side
comparison of different hypothesized cancer MOAs and is useful in
characterizing the likely operative MOA.
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5. Note added in proof

While this manuscript was undergoing peer review, {iu et ol
{23177 published “Use of high-throughput in vitro toxicity
screening data in cancer hazard evaluatlons by IARC Monograph
Worklng Groups” (ALTEX {online first, ity ffdaadniorg/ 10 3
1). Unlike the 1nvest1gat10n we conducted, the Chis
study did not include adjustment of ToxCast/Tox21
1esults for the activity burst phenomena. As shown in our analysis,
lack of consideration of this burst effect (e.g., failure to account for
cytotoxicity) leads to scientifically questlonable and at times, un-
founded, conclusions. Furthermore, et al, (27} did not
evaluate the ability of HTS data to predict cancer classifications.
Instead, Chiu and colleagues employed a case study approach that
appears to essentially mirror the methodology used in the recent
IARC Monographs; they relied on ToxPi evaluations for activity
rankings, HTS activity hit frequencies and an expert judgment
approach (without accompanying a priori science-based ground
rules or systematic guidance) to integrate mechanistic data
(including not only ToxCast/Tox21 data but apparently also results
from other in vitro and in vivo mechanistic studies ). We recommend
that readers carefully evaluate the strengths and limitations of our
study, and those of 1yt 21 21 {077} in determining the evidentiary
value of HTS ToxCast/Tox21 results for informing decisions on po-
tential carcinogenic risks of chemicals.
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